Section 6.7

Graphing Linear Equations

Rectangular Coordinate System

- The horizontal line is called the x-axis.
- The vertical line is called the y-axis.
- The point of intersection is the origin.

Plotting Points

- Each point in the $x y$-plane corresponds to a unique ordered pair (a, b).
- Plot the point $(2,4)$. Starting from the origin:

Move 2 units right

Move 4 units up

Copyright © 2009 Pearson Education, Inc.

Graphing Linear Equations

- Graph the equation

$$
y=5 x+2
$$

x	y
0	2
$-2 / 5$	0
-1	-3

To Graph Equations by Plotting Points

- Solve the equation for y.
- Select at least three values for x and find their corresponding values of y.
- Plot the points.
- The points should be in a straight line. Draw a line through the set of points and place arrow tips at both ends of the line.

Graphing Using Intercepts

- The x-intercept is found by letting $y=0$ and solving for x.
Example:

$$
\begin{aligned}
y & =-3 x+6 \\
0 & =-3 x+6 \\
-6 & =-3 x \\
2 & =x
\end{aligned}
$$

- The y-intercept is found by letting $x=0$ and solving for y.
Example: $\quad y=-3 x+6$
$y=-3(0)+6$
$y=6$

Example: Graph $3 x+2 y=6$

- Find the x-intercept.

$$
\begin{array}{r}
3 x+2 y=6 \\
3 x+2(0)=6 \\
3 x=6 \\
x=2
\end{array}
$$

- Find the y-intercept.

$$
\begin{array}{r}
3 x+2 y=6 \\
3(0)+2 y=6 \\
2 y=6 \\
y=3
\end{array}
$$

Slope

- The ratio of the vertical change to the horizontal change for any two points on the line.

$$
\begin{aligned}
\text { Slope } & =\frac{\text { vertical change }}{\text { horizontal change }} \\
\qquad m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Types of Slope

- Positive slope rises from left to right.
- Negative slope falls from left to right.
- The slope of a vertical line is undefined.
- The slope of a horizontal line is
 zero.

Example: Finding Slope

- Find the slope of the line through the points $(5,-3)$ and $(-2,-3)$.

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{-3-(-3)}{-2-5} \\
& m=\frac{-3+3}{-7} \\
& m=\frac{0}{-7}=0
\end{aligned}
$$

The Slope-Intercept Form of a Line

- Slope-Intercept Form of the Equation of the Line $y=m x+b$ where m is the slope of the line and $(0, b)$ is the y-intercept of the line.

Graphing Equations by Using the Slope and y-Intercept

- Solve the equation for y to place the equation in slope-intercept form.
- Determine the slope and y-intercept from the equation.
- Plot the y-intercept.
- Obtain a second point using the slope.
- Draw a straight line through the points.

Example

- Graph $2 x-3 y=9$.
- Write in slope-intercept form.

$$
\begin{aligned}
2 x-3 y & =9 & & \\
-3 y & =-2 x+9 & & \\
\frac{-3 y}{-3} & =\frac{-2 x}{-3}+\frac{9}{-3} & & \text { The } y \text {-intercept is }(0,-3) \\
y & =\frac{2}{3} x-3 & & \text { and the slope is } 2 / 3 .
\end{aligned}
$$

Copyright © 2009 Pearson Education, Inc.

Example continued

- Plot a point at (0,-3) on the y-axis, then move up 2 units and to the right 3 units.

Horizontal Lines

- Graph $y=-3$.
- y is always equal to -3 , the value of y can never be 0 .
- The graph is parallel to the x-axis.

Copyright © 2009 Pearson Education, Inc.

Vertical Lines

- Graph $x=-3$.
x always equals -3 , the value of x can never be 0 .

The graph is parallel to the y-axis.

